
COTI V2: Confidential Computing Ethereum Layer 2
Version 1.1

Nir Haloani1, Avishay Yanai2, Meital Levy2, and Yair Lavi1

1COTI
2Soda Labs

Abstract

The COTI V2 whitepaper presents an innovative approach to addressing one of the most pressing
issues in blockchain technology: the lack of confidentiality. As blockchain applications proliferate,
the need for privacy-preserving mechanisms becomes paramount to ensure user autonomy and protect
against threats like data breaches, theft, and fraud. COTI V2 introduces a sophisticated cryptographic
framework centered around garbled circuits and multiparty computation (MPC), offering a new stan-
dard for on-chain confidentiality as an EVM-compatible Layer 2. This framework not only enhances
the Ethereum ecosystem’s scalability and security but also opens up new possibilities for decentralized
applications (dApps) by enabling confidential transactions and data management. Through a compre-
hensive overview of the challenges and solutions in achieving confidentiality on public blockchains, the
whitepaper articulates COTI V2’s potential to revolutionize the blockchain space by making it more
secure, efficient, and user-friendly, thereby fostering broader adoption and innovation.

1 Why Confidentiality Is Blockchain Network’s Next Frontier

1.1 Introduction

For over a decade, two distinct technical hurdles have dominated the conversation in the realm of blockchain
technology: scalability and confidentiality. While the discourse around scaling solutions has intensified,
capturing significant industry attention, a smaller group of dedicated teams has diligently pursued the ad-
vancement of sophisticated cryptographic techniques to tackle the crucial challenge of confidentiality. This
persistent focus on confidentiality reveals a pivotal shift: privacy is poised to become the next frontier in
blockchain development. As aptly stated by Vitalik Buterin, co-founder of Ethereum: "One of the largest
remaining challenges in the Ethereum ecosystem is privacy. By default, anything that goes onto a public
blockchain is public." This inherent transparency, while initially lauded for its potential to foster trust, now
presents a significant barrier to broader adoption.

While scalability endeavors aim to address network capacity and transaction processing efficiency, ensuring
confidentiality delves deeper, safeguarding the very essence of user privacy and the confidentiality of their
sensitive data within the blockchain ecosystem. As the blockchain landscape matures and its applications
proliferate, prioritizing robust privacy solutions becomes imperative to foster a secure, inclusive, and trust-
worthy environment for users and organizations alike. This exploration of on-chain confidentiality, therefore,
represents a critical step towards realizing the full potential of blockchain technology and propelling it to-
wards a future of trust and transparency.

1

1.2 Transitioning from Web2 to Web3

From financial transactions to personal information, individuals are increasingly demanding control over
their personal data. This demand stems from the understanding that privacy isn’t just a luxury, but a funda-
mental human right. We believe that confidentiality is a fundamental human right and just as in the physical
world, where individuals have the right to private conversations, associations and transactions, it’s essential
that we find ways to protect it also in the digital world.

In many cases, it already does. Web2, or the internet as we know it today, offers a level of confidentiality
that was actually critical to its success in the early days. Part of the reason e-commerce exploded in the late
90’s was the fact that it inherited many of the confidentiality features of traditional financial systems. People
could purchase items online, without the fear of their transactions being made public. eBay and Amazon
didn’t broadcast your shopping preferences or your credit card details, and your purchases and personal
information were only known by you and your bank.

Confidentiality within Web2 also allowed for greater connection and cooperation between global parties and
markets around the world. Completely transparent systems are admirable, but they carry a risk of exposing
sensitive personal details, business information or intellectual property, especially between distrusting or
malevolent trading partners. Despite the counterintuitive nature of keeping secrets, confidentiality actually
allows parties to trust each other more.

It’s this trust that has made confidentiality the backbone of a whole host of online services. From voting
systems to healthcare, social media and banking, there are numerous Web2 applications that rely on individ-
uals being able to keep specific information shielded from public view. This becomes even more apparent
as our lives are increasingly conducted online. Additionally, the rise of AI and big data necessitates access
to private datasets for learning, but without compromising individual privacy.

Web2 isn’t without its flaws, however. While traditional online systems have devised numerous confidential-
ity features to protect users’ information, the centralized nature of these systems has resulted in countless
hacks and data breaches. Once your data is leaked, it becomes tradable and potentially abused. At this
point, you become the product. These cases are not rare - in fact, by 2025, it’s estimated that nearly 70% of
internet-connected people and 55% of businesses have had their data stolen at least on one occasion.

Web3, with its emphasis on data sharing and user empowerment, presents a paradoxical challenge: navigat-
ing the delicate balance between individual privacy and inherent blockchain transparency. While liberating
users from the control of centralized entities, Web3 inherits the public record characteristic of its underlying
technology. Achieving a high level of confidentiality in Web3 enables individuals to exercise autonomy
over both their finances and their digital identities. It empowers users to participate in Web3 without fear
of surveillance or unauthorized access to their personal data. With confidentiality, you’re able to make in-
formed decisions without fear of external interference or judgment. You become less susceptible to undue
influence or coercion from external parties, whether it be governments, corporations, or other individuals.

Unlike with Web2, where regulatory frameworks evolved organically in parallel, Web3 is a completely
new paradigm, complete with a complex architecture and no central authority. This means that historically,
regulators have struggled to define, let alone provide clarity on how they may operate. The fact that a
blockchain currently functions as a completely transparent ledger has only made this problem even more
difficult. Confidentiality on the blockchain will not only foster trust and confidence, but it will also allow
for the creation of new, regulatory frameworks required for enterprise adoption.

2

1.3 Confidentiality on Public Blockchains

Beyond the technological advancements in scalability and security, a fundamental challenge continues to
plague most public blockchains, particularly Ethereum: the complete transparency of transactions, assets,
and wallet addresses. Initially hailed as a virtue, this characteristic now presents an obstacle to broader
adoption. Businesses increasingly handling sensitive information on Web3 platforms require confidentiality
solutions that are no longer simply convenient, but indispensable for the ecosystem’s survival, and while
blockchain’s transparent nature empowers in many ways, it also carries significant privacy risks.

The critical role of privacy in blockchain is gaining traction among industry leaders and observers. Brian
Armstrong, CEO of Coinbase, emphasized the importance of privacy for Layer 2 solutions, signifying its
vital role in shaping the future of cryptocurrencies. Conversations with industry partners and stakeholders
reinforce this sentiment, highlighting privacy as not just a preference, but a legal and operational necessity
for businesses and enterprises. It goes beyond mere information concealment, encompassing protection,
control over one’s data and its disclosure, and ultimately safeguarding individual sovereignty.

In the realm of blockchain technology, anonymity and confidentiality serve distinct but complementary roles
in information protection. Anonymity focuses on shielding the identities of participants, ensuring transac-
tions can occur without revealing who is conducting them, often through mechanisms like pseudonymous
addresses or advanced cryptographic methods. Confidentiality, conversely, safeguards the content of trans-
actions, ensuring that sensitive data within a transaction is accessible only to authorized parties. While
anonymity solutions preserve the anonymity of blockchain participants, confidentiality protects the actual
transaction data, which is crucial for a wide range of blockchain applications where security and trust are
paramount.

Beyond securing individual and business information, blockchain confidentiality plays a critical role in safe-
guarding individual autonomy. This is particularly evident in protecting against theft, scams, and fraud
within the realm of decentralized finance (DeFi) applications built on Ethereum. One prevalent example is
the exploitation known as Maximal Extractable Value (MEV), where malicious actors leverage the trans-
parency of public blockchains to their advantage. They scan incoming transactions, identify legitimate
trades, and insert their own before them. This front-running manipulation alters the asset price for the
unaware parties, allowing the malicious actors to profit once the transaction completes. This exploitative
practice thrives solely on the full visibility of pending transactions on the blockchain. Confidential trans-
actions, however, disrupt this dynamic by obscuring their details. This eliminates the ability to frontrun
legitimate trades for illicit gain, potentially rendering MEV losses a relic of the past.

However, the effect that blockchain transparency has on individual autonomy extends beyond frontrunning.
While wallet addresses themselves are pseudonymous, different analysis techniques can often link them to
real-world identities. This means even seemingly anonymous transactions can be traced back to individuals,
potentially exposing their financial activity, trading strategies, and even personal habits. The risk of such
de-anonymization can be a significant deterrent for users seeking true privacy on public blockchains.

Furthermore, the public nature of blockchains raises concerns about data breaches or leaks. If a private
key associated with a wallet address is compromised, all the information linked to that address, including
transaction history and potentially even the value of holdings, becomes publicly accessible. This can have
severe financial consequences and even pose physical security risks depending on the nature of the assets.

This lack of confidentiality creates significant hurdles for various Web3 applications seeking wider adoption.
By obscuring transaction details and severing the link between wallet addresses and real-world identities,

3

confidentiality safeguards individuals from de-anonymization efforts and protects their financial confiden-
tiality. Additionally, by limiting the information publicly accessible on the blockchain, even in the event
of a data breach, the potential damage is significantly reduced. This fosters a more secure environment for
users and encourages broader participation in Web3 applications.

1.4 Rethinking On-Chain Confidentiality: Pushing Beyond Limitations
Previously, achieving on-chain confidentiality for decentralized applications appeared nearly impossible.
Many early attempts relied on Zero-Knowledge Proofs (ZKPs) for concealing transaction information. While
ZKPs offer compelling functionalities, they aren’t naturally equipped to address confidentiality in the con-
text of on-chain transactions.

Let’s explore this limitation by examining Zcash, a popular blockchain utilizing ZKPs for shielded trans-
actions. In Zcash, users can send transactions that conceal the sender, receiver, and transaction amount.
However, this approach comes with a fundamental drawback: the inability to execute complex logic or
access the current state of the system.

Since ZKPs operate on encrypted data, it’s impossible to directly access the underlying information. This
creates a crucial limitation: the system, including smart contracts, cannot evaluate the current state or per-
form complex calculations using this hidden data. Consequently, answering even basic questions like "How
many tokens are in the system?" becomes impossible. This inability to access and manipulate encrypted
data poses a significant challenge for decentralized applications (dApps), which often rely on complex com-
putations and shared state.

While promising advancements have been made in ZK-based approaches through advanced techniques, in-
herent limitations in logic persist. No amount of cryptographic innovation can overcome these fundamental
barriers. Moreover, regulatory hurdles often impede the progress of attempts to address privacy concerns.
Projects like Zcash or transaction mixing applications like TornadoCash prioritized user anonymity over
compliance, leading to regulatory scrutiny and eventual shutdown.

Recent breakthroughs in cryptography, like Fully Homomorphic Encryption (FHE), delivered a new ap-
proach to on-chain confidentiality by allowing computations to be performed directly on encrypted data,
essentially preserving the overall logic of a transparent financial system. This means developers can design
smart contracts and dApps as if they were operating on clear data, even though the underlying information
remains encrypted.

While Fully Homomorphic Encryption (FHE) offers a significant leap forward in on-chain confidentiality,
it’s not without its limitations. FHE computations are inherently complex, demanding significantly more
processing power compared to traditional methods, potentially leading to slower transactions and higher
operational costs for dApps built on FHE. Additionally, important FHE schemes currently lacks the full
spectrum of functionalities available with unencrypted data, potentially restricting the types of dApps it can
support.

In summary, a fresh approach is imperative to reconcile privacy with regulatory compliance and user expec-
tations in the Web3 landscape.

COTI V2 introduces a novel approach that ensures performance without sacrificing confidentiality.
To enable a performant solution with strong privacy guarantees, COTI V2 will utilize a novel combi-
nation of well-established privacy-enhancing technologies (PETs), with the main ingredient being a
Garbling Protocol.

4

2 The Core Technology: Garbled Circuits-Based MPC1

2.1 Introduction to Garbling Protocols

Privacy has always been a pivotal aspect of human life, cherished across all ages. However, in the current
era, marked by the internet revolution, its significance has magnified. Society is racing to keep pace with
technological advancements to ensure personal information remains confidential. In today’s digital world,
where nearly every action leaves a trace, safeguarding our privacy is not just importantit is essential. We
find ourselves constantly navigating the fine line between harnessing technology’s benefits and protecting
our private lives from intrusion.

The mid-20th century’s introduction of sophisticated cryptography signaled a crucial shift towards secure
communication. This period was defined by the urgent need to transmit messages safely across potentially
compromised mediumsbe it physical documents carried by unreliable couriers or digital data transmitted
through the airwaves or wires vulnerable to interception. The burgeoning field of cryptography focused on
devising methods that guaranteed not only secure communication but also the efficiency and resilience of
these communications against eavesdropping or tampering. This era witnessed cryptography’s evolution
from an arcane practice to a fundamental, science-driven toolkit essential for military units, governments,
and eventually the general public, shaping the complex digital security landscape we navigate today.

By the late 20th century and in subsequent decades, the cryptographic community experienced a revolution-
ary shift in its research focus, heralding the era of secure multiparty computation (MPC). This cryptographic
breakthrough allowed multiple parties to collaboratively compute functions over their private data without
revealing the actual data to one another. These advancements extended beyond theoretical significance, of-
fering profound practical implications. They facilitated the secure exchange and processing of information
in a manner that preserved both privacy and confidentiality, addressing a growing concern in an increasingly
interconnected world. From enabling confidential electronic voting systems to secure data sharing among
organizations, multiparty computation marked a considerable advancement. This period of research broad-
ened the horizons of cryptography beyond traditional encryption and decryption, catering to the nuanced
requirements of a society ever more reliant on digital interactions and the perpetual challenge of balancing
technological convenience with the imperative to preserve privacy.

Opting for a garbled-circuit-based MPC to achieve on-chain privacy aligns with several critical metrics:

• Modularity. The garbled-circuit-based solution is structured into two independent phases, termed
’Garbling’ and ’Evaluation’. The Garbling phase, involving significant computation by the network
nodes, is conducted ’offline’ in a pre-processing stage, producing a garbled circuita secure container
for data processing. This phase continually generates garbled circuits for subsequent use during the
Evaluation phase, where actual transactions are processed. The Evaluation phase is executed by the
network nodes in an exceedingly efficient manner. This modular approach is elegant and establishes
a ’privacy supply chain’.

• Security. Amidst various encryption schemes, our solution aspires to align with industry standards
right from the start, rather than introducing a proprietary, untested encryption scheme or waiting for
a lengthy standardization process. We employ encryption schemes already widely adopted by the
world’s most secure systems, including those managed by governments and large banks. This ap-
proach involves standardized symmetric-key schemes for encryption (e.g., AES-CTR) and standard-
ized asymmetric-key schemes for key distribution (e.g., RSA), enhancing adoption by eliminating the

1Soda Labs - All Rights Reserved

5

need for additional, unverified security assumptions. Contrary to other MPC methods, garbled-circuit-
based solutions facilitate an efficient integration of these encryption schemes within a circuit that can
be securely evaluated in a distributed manner.

Privacy. In recent years, numerous initiatives have sought to enhance on-chain privacy via the pow-
erful cryptographic tool known as zero-knowledge proof (ZKP). While ZKP allows data owners to
verify the correctness of statements about their data without revealing the data itself, it falls short in
scenarios involving multiple data owners who wish to collaborate based on their private data. This
is vital for a range of blockchain applications, from dynamic identity systems and DeFi applications
like AMM to portfolio management, social trading, peer-to-peer messaging, auctions, and governance.
Our approach to on-chain privacy is driven by a secure MPC protocol, where users’ data is sent to a
private data pool. Here, any process, public or private, can be applied to the data without disclosing
anything but the process result as intended by the application developer, and only with user consent.

• Performance. With the objective of optimizing real-time transaction processing involving private
data, having pre-prepared garbled circuits enables nodes participating in the Evaluation phase to
achieve a high transaction throughput. The low-latency characteristic of garbled-circuit-based MPC
ensures that the number of communication rounds between nodes is constant and does not depend on
the number of parties involved or the complexity of the transaction. Crucially, the technologies un-
derpinning both the Garbling and Evaluation phases are ready for implementation on current devices
(including smartphones), without the need for specialized hardware or awaiting significant advance-
ments in research.

• End-user experience. Maintaining an unaltered security experience (as highlighted in the security
discussion), submitting private data to the network resembles sending data over a TLS channel, em-
ploying a symmetric-key encryption scheme. This means devices today are already equipped to inter-
act with the network using standard protocols and widely known software libraries. This compatibility
extends to software operating on personal computers, web browsers, smartphones, smart sensors, and
potentially any IoT device.

This holistic approach to on-chain privacy underscores our dedication to ensuring security, privacy, effi-
ciency, and a user-centric experience, thereby setting a new standard for privacy in the digital domain.

2.2 Introduction of gcEVM

Ethereum virtual machine (EVM) is the leading blockchain-native virtual machine, interleaving computer
architecture aspects with incentive mechanisms, which made it the first state-transition engine for a decen-
tralized and permissionless general system. One of the main obstacles to the mass adoption of the EVM is
its lack of confidentiality, leaving all information public, which is obviously not in par with what businesses,
communities, and individuals expect from a system. To this end, we introduce the gcEVM, an extension
to the EVM that supports confidentiality by offering a series of functionalities for keeping private data and
performing operation on it without ever exposing it (unless required by the execution itself). Because of the
nature of the EVM, where everything is visible, handling ciphertexts must be meticulously done, in order
to protect those ciphertexts from theft, replication, etc. We demonstrate our solution via Garbled Circuit,
hence the extension is called gcEVM.

In the rest of this section we give the necessary background on the EVM and argue about the importance of
confidentiality in the EVM for a real impact. We briefly describe the notion of garbled circuits and garbling
protocols and lastly we describe our EVM extension that relies on a garbling protocol.

6

2.3 Background on the EVM

The EVM’s Accounts and State. At a very high-level, the EVM takes an ordered list of valid transactions
and executes them. Execution of transactions may change the state of the machine and so, in an abstract way,
we refer to this execution process as the state-transition function of the machine. The state of the EVM is
composed of many sub-states, each is associated with an account (also known as address); and these accounts
may be either external or internal. An external account (also known as externally owned account, or EOA)
is an account that may initiate a transaction whereas an internal account (also known as a smart contract)
only reacts to requests that were initiated by EOAs. In the following, we use the terms internal account’
and smart contract’ interchangeably. The sub-state associated with every account contains its balance and
nonce, where balance refers to the number of coins that account owns’ and the nonce refers to the number
of transactions that account has issued so far, such that each newly issued transaction increment that number
by exactly one; the latter is used as a protection from replay attacks so that no transaction may by launched
twice. Since internal accounts (smart contract) cannot really initiate transactions, their nonce is incremented
only when they trigger the creation of a new internal account, thus, the nonce of a smart contract simply
refers to the number of other smart contracts that they have created. While the sub-state associated with an
EOA consists of its balance and nonce only, the sub-state of a smart contract may additionally contain an
arbitrary data structure along with a set of interfaces (or methods) that can change its sub-state (either its
balance, nonce, or the additional data structure).

Transactions may be simple or complex; in a simple transaction an EOA transfers some amount of the
native coin to another account (external or internal); in a complex transaction an EOA may either create a
new smart contract (also referred as smart contract deployment) or call a method of an already existing smart
contract. In the latter, the reaction of the smart contract to that call may involve further calls to methods
of (potentially other) smart contracts, and so on. This way, a complex transaction initiated by an EOA may
trigger a chain-reaction that causes changes in multiple sub-states. On the other hand, a complex transaction
may also cause no change to any sub-state at all. When a method is said to be a view-method it is guaranteed
that it never changes any sub-state, which implies that it can call only other view-methods.

The EVM’s Execution, Memory and Storage. Execution in the EVM is fueled by gas, which is paid
in the native coin (Ether in Ethereum) and serves as a measure of computational effort. This gas is paid
from the balance of the EOA that initiates the transaction. Each operation within the EVM, from arithmetic
calculations to data storage, consumes a certain amount of gas, incentivizing efficiency and preventing
network abuse (e.g., mounting a denial-of-service attack by sending an infinite stream of transactions).

Memory management in the EVM is unique; it maintains a volatile memory store (simply called memory’
hereafter) during execution but does not retain it after the execution completes. This memory is linear
(instantiated with a stack data structure) and expands as needed by a contract’s execution but is wiped
clean after the process ends. For persistent storage, the EVM utilizes a key-value store known as storage’,
which persists between transactions but is significantly more costly in terms of gas to utilize. This design
encourages developers to optimize their use of storage and memory, balancing the need for persistent data
against the gas costs of operations, ensuring that the EVM remains scalable and efficient. The storage is the
one that manages the EVM’s state, and so each sub-state is maintained as an isolated key-value store.

Let us describe a typical execution process: When a smart contract method is called, and it needs to read data
from its storage (e.g., a variable value), the EVM fetches this data from the contract’s storage (a sub-state)
and loads it into memory for quick access during this specific execution. This is done through specific EVM
opcodes such as sload, which reads data from the variable’s location at the storage. The data read is then
available in memory for processing or computation during the contract execution. After the smart contract

7

performs computations or manipulates data within the memory, there may be a need to persist some of this
data back to storage. To store data back from memory to storage, the contract uses opcodes like sstore. This
opcode takes the data from memory and writes it to the specified location in the contract’s storage.

Data Passing Between Smart Contracts. The EVM facilitates data passing from one contract to another via
a function call; it employs a mechanism that allows contracts to interact and invoke functions on each other.
This process is foundational to the composability and interoperability of smart contracts on the Ethereum
platform.

When a contract (caller) wants to invoke a function on another contract (callee), it specifies the callee’s
address and the function to be called, along with any arguments required by that function. This can be
done using op-codes like call and delegatecall. The data passed to the callee includes information about the
function to be executed (identified by its signature) and the arguments for that function. The callee contract
then executes the specified function using the provided arguments. This execution can read from or write
to the callee’s storage, depending on the function’s logic, and eventually gets back to the caller contract
using the opcode ret. A run-time variable, called depth, is incremented on every function call (to a different
contract) and decremented when the function returns to the caller.

Error Handling. The notion of reverting a transaction or a contract call is a fundamental concept designed
to ensure the integrity and security of smart contract operations. A revert operation undoes all changes made
to the state during a transaction or call, except for the consumption of gas, and returns an error message
to the caller. This mechanism is crucial for handling errors and ensuring that failed transactions do not
alter the blockchain state in an unintended manner. A revert error is triggered intentionally by using the
revert statement in Solidity or when conditions specified by require statements are not met. It’s used to
handle logical errors in contract execution, where a certain condition or prerequisite is not satisfied. The gas
consumed up to the point of revert is not refunded, but any remaining gas is.

An assert function is used in Solidity to handle internal errors and to check for invariants within the code.
If an assert statement fails, it indicates a serious bug in the contract code, leading to a panic’ error. Unlike
revert, assert failures consume all the gas provided with the transaction, signaling a more severe form of
error that should not occur during normal operation.

Other types of error are possible in the EVM, like out-of-gas, stack overflow or underflow, invalid opcode,
and more, each has a different cause and consequences on the EVM.

2.4 The EVM’s (lack of) Confidentiality

One of the most controversial properties of the EVM is that everything is public, meaning that the sub-
state of smart contracts, which may include financial, social (and practically any kind of) information, is
completely visible to all. As we argue below, this property of the EVM is a double-edged sword, which, for
a long time, formed a dichotomy between decentralization and adoption.

On the one hand, this fact played as key-contributor to the decentralization of Ethereum (who is the first to
deploy an EVM), as it allows anyone with a computer to run it and take part in the execution of agreed upon
lists of transactions (with an adequate financial incentive mechanism); thereby increasing the validity of the
system’s state, or in other words, increasing the trust that the information laying in the state is the product
of correct execution of the past transactions.

On the other hand, the fact that everything is visible to all poses a significant setback to the usability and

8

adoption of the EVM. To date, the EVM’s prominent use-case is de-fi, which paved the way to collaborative
liquidity pools and automatic movement of funds. In many cases however, de-fi is used by bad actors for
scam (e.g., rug pools’), fraud (e.g., money laundering), and many times is considered as funds streaming
in a loop’ with no real impact. Arguably, one of the reasons for this is the lack of confidentiality, leaving
honest actors (smart contracts, DAOs and users) unable to prove and verify each other’s identity, thereby be-
ing more vulnerable to exploits and manipulations. Furthermore, the lack of confidentiality sets an obstacle
to real social impact, as most real world social activities deal with private information that must be treated
adequately. For example, an election requires the independence of votes and the freedom to vote one’s opin-
ion without fearing any consequences. Sealed bid auction, as another example, requires an independence of
bids as well as their confidentiality, since public bids expose the bidder’s sensitive financial state.

2.5 Garbled Circuits

In this section we use a variation of the notation and definitions from ‘Foundations of Garbled Circuits’ by
Bellare, Hoang and Rogaway [BHR12].

2.5.1 Circuits

For simplicity, we consider circuits with fan-in of two, even though our solution is not limited to those.

A circuit is a six-tuple f = (n,m, q,A,B,G), where n ≥ 2 is the number of inputs, m ≥ 1 is the number
of outputs, and q ≥ 1 is the number of gates. The inputs, wires, outputs, and gates sets are indexed by
Inputs = {1, . . . , n}, Wires = {1, . . . , n + q}, Outputs = {n + q − m + 1, . . . , n + q}, and Gates =
{n + 1, . . . , n + q}, respectively. Then, the functions A and B are of the form Gates → Wires \ Outputs,
where A(g) (resp. B(g)) returns the first, or left, (resp. second, or right) incoming wire of gate g. Finally,
G is a function of the form Gates× V 2 → V , where V is the domain of values that wires can take. Here V
is defined abstractly while typically it is defined by finite group, ring or field. For instance, many times V
is instantiated by the domain V = F2 = {0, 1} and the function G, which define a binary (Boolean) gates;
alternatively, it can be defined by V = F for some finite field F and G, which define arithmetic gates over F.

The above embodies the following. Gates have fan-in of two (two inputs), arbitrary functionality, and
arbitrary fan-out (an output wire may serve as an incoming wire to unlimited number of gates). The wires
are numbered 1 to n+ q. Every non-input wire is the outgoing wire of some gate. The i-th value of an input
is presented along wire i. The i-th value of an output is collected off wire n+ q−m+ i. The outgoing wire
of each gate serves as the name of that gate. Output wires may not be input wires and may not be incoming
wires to gates. No output wire may be twice used in the output. Requiring A(g) < B(g) < g ensures that
the directed graph corresponding to circuit f is acyclic, and that no wire twice feeds a gate; the numbering
of gates comprise a topological sort.

Circuit evaluation. The canonical evaluation function evcirc takes a circuit f and a list of inputs x =
x1, x2, . . . , xn and returns a list of outputs xn+q−m+1, . . . , xn+q. See Listing 1 for a formal description:

2.5.2 Garbling Schemes

A garbling scheme is a five-tuple of algorithms G = (Gb,En,De,Ev, ev), where Gb is probabilistic and the
rest are deterministic. Let f = (n,m, q,A,B,G) be a circuit that we wish to garble. Recall that f represent
a function of the form V n → V m. On input f and a security parameter κ ∈ N, the garbling algorithm
Gb returns the triple (F, e, d) ← Gb(1κ, f), where e describes an encoding function, En(e, ·), that maps an
initial input x ∈ V n to a garbled input X = En(e, x); F describes a garbled circuit, Ev(F, ·), that maps

9

Algorithm 1 Canonical Evaluation evcirc(f, x)

1: (n,m, q,A,B,G)← f .
2: for g ← n+ 1 to g ← n+ q do
3: a← A(g) and b← B(g)
4: xg ← G(g, xa, xb)
5: end for
6: return xn+q−m+1, . . . , xn+q

each garbled input X to a garbled output Y = Ev(F,X); and d describes a decoding function, De(d, ·) that
maps a garbled output Y to a final output y = De(d, Y) ∈ V m.

Projective garbling schemes. A common approach in existing garbling schemes is for e to consist of a
vector of sets of labels, such that a set of labels Li is associated with the i-th input or output wire (i ∈
{1, . . . , n} ∪ {n+ q −m+ 1, . . . , n+ q}). For example, if the circuit is Boolean then we have V = {0, 1}
and there are two labels for the i-th input wire, namely, Li = {L0

i , L
1
i }. The encoding function En(e, ·)

then uses the values x = x1, . . . , xn to select from e = (L1, . . . , Ln) the subvector X = (X1, . . . , Xn) =
(Lx1

1 , . . . , Lxn
n).

2.5.3 Example: Secure Two-Party Computation (2PC) via Garbled Circuits

Garbling schemes were originally designed as a solution for secure two-party computation, which work
as follows. Suppose Alice has nA inputs, denoted xA = (x1, . . . , xnA) and Bob has nB inputs, denoted
xnA+1, . . . , xnA+nB , where xi ∈ {0, 1} for all i, and n = nA + nB . Alice and Bob wish to securely
compute the circuit f = (n,m, q,A,B,G) over their joint inputs x1, . . . , xn. Alice and Bob can use a
garbling scheme to do so, as shown in Algorithm 2 in which Alice and Bob take the roles of the Garbler
and Evaluator, respectively. The garbler (Alice) generates the garbled circuit F and its own garbled input
XA, and sends both to the evaluator (Bob). Then, the evaluator obtains its own garbled input XB via a
cryptographic protocol called oblivious transfer (OT). Finally, using the garbled circuit and the garbled
inputs, the evaluator can obtain the garbled output Y and using the decoding information d it can obtain the
actual (plaintext) output y.

Algorithm 2 Secure Two-Party Computation f(xA, xB)

1: Interpret (n,m, q,A,B,G)← f .
2: Alice (the garbler) computes (F, e, d)← Gb(1κ, f) (κ is the security parameter).
3: Alice computes her garbled input XA = En(e, xA).
4: Alice sends F, d and XA to Bob.
5: Alice and Bob invoke a two-party protocol called oblivious transfer (OT). In this protocol Alice privately

has e and Bob privately has xB , and Bob (and only Bob) obtains the output XB = En(e, xB).
6: Bob computes Y = Ev(F,X) where X is the concatenation of XA and XB .
7: Bob computes y = De(d, Y) which is the output of the computation. At this stage Bob may share

that output with Alice; in case Bob is suspicious of being malicious other security measurements are in
place.

Security notions of garbling schemes. Garbling schemes may be associated with different security guar-
antees, like privacy, obliviousness, authenticity, and more; in our context we are mostly interested in privacy
and authenticity. In a high level, privacy refers to the fact that the evaluator is unable to tell which actual

10

(plaintext) value passes through wires of the circuit, even after having the garbled circuit and the garbled
inputs (unless it has prior information about those values). Authenticity means that the evaluator cannot
produce garbled output Y ′ that is different than the correct garbled output Y that is obtained through honest
evaluation of the garbled circuit.

Extension to Secure Multiparty Computation (MPC). The above is an example of how to distribute
the computation of f between two parties where each party holds part of the inputs. In our context, we are
interested in secure computation that can be executed by many parties where the private inputs themselves
might not even be theirs, e.g., private input may contain some identity information of a client (who is not
necessarily running an execution node). In a very high level, this is solved by two techniques, the first
is cryptographic secret sharing and the second is multiparty garbling protocol. In such a solution, an
external client is the one who holds the private input and the execution parties are responsible for holding
it securely and performing secure computation over it when needed.2. The client’s private data is stored by
the execution parties in a way that requires many of them to behave maliciously in order to disclose that
data, otherwise, no information can be inferred about that data. With regard to computation over such secret
shared data, the parties invoke a garbling protocol that can be run by many parties. Various protocols for
multiparty garbling have been proposed in the literature since the ’90, optimizing for various metrics like
communication rounds, bandwidth and computation complexity. The protocol that we use for the gcEVM
(see next section) is fundamentally different than those protocols, although building on similar techniques.

2.6 The gcEVM

The gcEVM involves extension of the EVM in multiple dimensions. First, we introduce new data types in
order to capture the fact that information of this type must be kept secret; then, we introduce new operations
that can perform manipulation on secret data types without disclosing the secrets; and finally, we must take
extra care on the way we manage and protect these new data type against attackers who wish to mount some
sort of a replay attack. We discuss all these topics in this section.

2.6.1 gcEVM-Related Data Types

Similar to other systems, all the information in the EVM sub-state, including the balance, nonce, and any-
thing residing in the data structure maintained by smart contracts, is stored in atomic typed variables, namely,
variables that capture a certain type of information, be it small or large, signed or unsigned integers, strings,
or bytes. Let Types be the set of data types supported by the EVM.

For the purpose of supporting confidentiality, we introduce a new set of data types, denoted STypes, that
is analogous to Types; each data type in STypes is basically the secure version of one data type from
Types. For example, we have uint8,uint16,uint32,uint64 ∈ Types, then their secure version
are suint8,suint16,suint32,suint64 ∈ STypes. Generally speaking, the secure version of an
EVM data type will have the same name, prepended with the letter ‘s’ (to indicate a secret). A smart
contract developer must use these types if it wishes the underlying information to remain secret.

These data types in STypes are all referred as an abstract data type, called CT (for ‘ciphertext’), which is
essentially a re-definition of uint256, whereas data types in Types are referred as PT (for ‘plaintext’).
Looking ahead, having a ciphertext in a smart contract state, or in the memory during an execution does
not necessarily mean that it is authenticated; the gcEVM must make sure that a ciphertext is authenticated
before entering it into any secure computation procedure.
2Computation over a client’s private data must be under the client’s consent, a constraint we deal with in the next sections.

11

We make a distinction between secret data types that are used for security ‘at rest’, ‘in transit’, or ‘in use’.
That is, while the ciphertext data type (denoted CT) are use to secure data at rest (be it the persistent storage
or the volatile memory used in the course of an execution of a transaction), we use the inputtext data type
(denoted IT) for protecting data in transit and the garbledtext™data type (denoted GT) for protecting data
in use.

Protecting data in transit means protecting the ciphertexts that a user wish to send to some smart contract
function in a transaction. Specifically, the goal is that when a user incorporate some ciphertext in its trans-
action, this ciphertext will be used only in the context of this transaction and cannot be re-used in other
transactions (by malicious actors). For example, if a user participates in a sealed bid auction and sends a
ciphertext in its transaction that hides its plaintext bid, we must prevent an adversary from copying that
user’s ciphertext and submitting it as its own bid; furthermore, we must prevent an adversary from using
that ciphertext in any way, so that the gcEVM will not agree to perform any secure operation on it.

Protecting data in use refers to the fact that even when data is secure on storage or on memory, its security
might be broken when performing some operations on it, like using it within a secure computation protocol.

In the following we give a formal description of the three data types:

• ciphertext (CT). This data type represents the result of a CPA-secure encryption scheme and used for
securing data at rest. It is the actual datatype visible in the system’s state. Due to other security mech-
anisms employed in the system, like authenticated memory and storage, and the fact that decryption is
performed to ‘well formed’ ciphertexts only, we do not need to use a CCA-secure encryption scheme
(the attacker does not get to choose the ciphertexts to be decrypted by the system).

Formally, let Enc = (kgen, enc, dec) be a CPA-secure encryption scheme, for a message m =
({0, 1}ℓ)∗ (i.e., the message length is a multiple of the encryption block length ℓ) we have:

CT = c← enck(m) (1)

where (ek, dk) ← Enc.kgen(1κ)3 and κ is the computational security parameter. Looking ahead, by
default, instances of CT will be the result of encryption using the system’s key, whereas some CTs
will be the result of encryption using a client’s key.

The encryption scheme we use is AES128 in the counter mode (CTR), thus, for a message m =
m1∥m1| . . . (with |mi| = 128) the encryption result is c = c0∥c1∥ . . . where c0 = r, ci = AES128k(r+
i) ⊕mi, and r is chosen uniformly at random. CTR mode is advantageous as it allows a random ac-
cess to a specific slot in the plaintext, and it only performs a forward evaluation of the underlying PRF
(AES).

• inputtext (IT). This data type is a wrapper of CT only used to infiltrated data to the gcEVM from
the outside world. The role of IT is to make sure that the wrapped CT is used only for the purpose
it is intended to by the user who sent it. An IT may be formed of an authenticated encryption (e.g.,
using the encrypt-then-authenticate approach) or a signcryption;4 in both cases the associated data
being authenticated must contain the identities of the sender and the receiver. The gcEVM inherits
the transaction format from the EVM and so every message is already signed, and the signature is
applied on those identities, as required. The sender’s identity (which is the user) is extracted from

3Since we use a symmetric encryption scheme we have k = ek = dk, but asymmetric schemes may be used in the same way
4See [KL20] for a discussion about authenticated encryption and signcryption, and [BSW06, SPW07] for a signatures with strong
security; in [BMP22] they argue that ECDSA has strong security (also called enhanced unforgeability).

12

the signature itself, while the receiver’s identity is combined of the contract address and the function
within that contract to be invoked.

The above suggests that IT can be in the exact same format as CT, however, there are subtleties
that require us taking some extra care. Specifically, instead of fully relying on the signature on the
transaction as a whole, we ask the user to individually sign each CT (as well as the identities). This is
important for security at least for the support of view functions in a setting of a single gcEVM node
(i.e., the entire system consists of a single node). Since invocation of view functions do not trigger the
verification of a signature on the transaction (in fact, calls to view functions do not have to be signed
at all), it means that an attacker may ‘steal’ an honest user’s ciphertext: the attacker’s contract will
have a function like leakData(CT c, address sender), which onboards the ciphertext c to
the system’s memory using the sender’s key, and then decrypts it, so that the plaintext hidden by
c is revealed to everyone (and to the attacker in particular). The attacker now takes some ciphertext
c sent to the gcEVM earlier by an honest user of address user_addr, and calls the above function
with leakData(c, user_addr), which reveals the value that the honest user intended to keep
private. Signing each ciphertext individually prevent such an attacks.

Then, we formalize an inputtext as follows. Let ctm be a ciphertext for message m and let Sig =
(kgen, sign, verify) be an unforgeable signature scheme; the inputtext format for m is:

IT = (ctm, σ) = (ctm, signsk(d∥ctm)) (2)

where (sk, vk) ← Sig.kgen(1κ), κ is the computational security parameter, and d encapsulates the
identities, namely,

d = user_addr∥contract_addr∥func. (3)

Given IT = (ct, σ), before the gcEVM agrees to work with ct it must first check the identity of the
sender and then decrypt ct using that sender’s key. Specifically, this is done by:

m =

{
deck(c) if verifypk(d∥c, σ) = 1

⊥ otherwise
(4)

We instantiate Sig with the ECDSA scheme over secp256k1.

• garbledtext™(GT). This datatype is used to securely handle data while in use. Unlike inputtext and
ciphertext, garbledtext is in a form that is readily available for manipulation (e.g., making arithmetics
over the plaintext it hides) which is made inside the garbled execution environment (see below).5

Using a binary-projective implementation of a garbling scheme the garbledtext version of a message
m = (m1, . . . ,mℓ) where mi ∈ {0, 1}, is gt of type GT, such that

gt = L1, . . . ,Lℓ (5)

where Lℓ is a κ-bit label (typically κ = 128). Overall, a garbled-text expands the underlying data by
a factor of κ. This expansion has no effect on the long-term storage requirement of the system, as
the lifetime of garbledtexts is short (it is only valid during the execution time of a transaction). The
garbledtexts themselves are not utilized by smart contracts and are not appear in their raw form in the
gcEVM memory or storage, instead, their handles are being used, where a handle of a garbledtext is

5We note that in FHE-based solutions there is no distinction in the representation of hidden data at rest and in use.

13

simply a hash on the list of its labels; namely, hgt = H(gt) is the handle of gt, where H is a hash
function. We instantiate H by Keccak, which is a collision resistant hash function, therefore, the
probability of two garbledtexts having the same handle is negligible.

The nodes who take part in evaluation or verification of garbled circuits do obtain the raw representa-
tion of garbledtext (the labels). Those nodes store a map of the form hgt → gt; whenever a secure
operation is invoked on garbledtext(s) the evaluation nodes perform the actual computation, which
mostly results with another garbledtext, whereas verification nodes have the result of the computation
and verify its correctness.

The fact that evaluation nodes obtain the raw form of garbledtexts forces the protocol design to assume
the worst-case scenario, that the attacker obtains them too (e.g., an attacker who corrupts an evaluation
node). Thus, the system must protect itself from theft of garbledtexts. For example, suppose that a
corrupted evaluation node knows that gt is a garbledtext result of some secure operation in the next
block, then it may inject hgt to a function of some contract in the next block, such that the function
performs decryption of that garbledtext. Fortunately, the garbling scheme ensures that all garbledtexts
are unpredictable and are only known to the evaluation nodes at the moment of evaluation and never
before.

2.6.2 The gcEVM Data-Flow

Before delving into technical details, let us describe the data-flow at a high level, which is also depicted in
Figure 1.

In order to preserve security in the course of the execution, the network and the users maintain multiple
keys:

• Network key: nk is the network symmetric key. This key is being distributively generated on the
network’s startup (via a key-generation protocol) which results with a key share nki to MPC node
number i. A refresh protocol is applied to the network key, which results with a new key share nk′i to
the nodes, but the secret key nk itself remains the same; such mechanism is intended to protect from
adaptive adversaries, who can corrupt a dynamic subset of the parties at every given moment, and
thwart accumulation of their power. In addition, a re-generation of the network key would take place
from time to tiem, according to the network’s policy (e.g., upon accumulation of additional 20% of
staked funds); this re-generation protocol would generate a new network key nk∗ and re-encrypt all
ciphertexts under this new one.

• User key: Apart from the secret signing key that users usually maintain in their wallet, the user has a
symmetric key uk with which it enters new data to the network. Like the network key nk, the user key
uk is distributively generated and is secret shared among the network nodes (so node number i holds
share uki). Thus, when a new data is to be entered (e.g., to a function of a smart contract) the user
encrypts it and the function asks to decrypt and use it. As will be shortly explained, such a decryption
does not reveal the plaintext to the function (or in public in any way), rather, it transform the data into
a garbledtext, which enables the function to securely operate on it.

• Key-retrieval key: This is a public-key that is generated by a user in order to retrieve its symmetric key
from the network. This is done by a generation of asymmetric encryption and decryption keys ek, dk
by the user, and submitting ek to the network (via a transaction). Upon receiving the encryption key
ek, the network encrypts the user’s symmetric key uk under the temporary public encryption key ek,

14

and returns the encryption result to the user. The user then uses the secret decryption key dk to decrypt
that message and obtain the symmetric key uk that is also maintained by the network. The user can
now use uk in order to enter encrypted data to the network.

The network maintains its own symmetric encryption key as well as a symmetric encryption key for every
user that wants to benefit from data privacy in the system. In contrast to a signature key-pair, which is
generated at the user and can be used without any on-boarding process, the encryption key for each user is
generated by the network and can be used by the user only after on-boarding, which entails a simple query
to the system to generate its key (or to retrieve it if it already exists) via the key-retrieval key. Note that the
key may be generated prior to the user’s query, in cases a smart contract already performed an encryption
toward that user (meaning that the smart contract decided that some information should be decipherable by
that user only).

For a user to bring encrypted data to the gcEVM, it has to encrypt it using its own symmetric key, and sign
it using its own signing key. These two form an inputtext (as detailed above). Once this inputtext reaches a
function of a contract, the function first has to verify its authenticity and that the inputtext has landed where
the sender (user) really intended it to land; the result of a successful verification will be a garbledtext that is
ready to work with (it can serve as an input for secure operations) inside the garbled execution environment
(GEE). The verification procedure is according to Equation 4 above.

The above is one path to the GEE; a second path to the GEE would be to ‘onboard’ a ciphertext, which
turns a ciphertext into a garbledtext (both hiding the same plaintext). Ciphertexts reside in the state of each
contract and ‘belong’ to the contract where they reside, meaning that a function on one contract cannot
request the onboarding of a ciphertext in another contract, which is critical for the security and privacy of
users’ data.

Figure 1: Transition between data types.

15

2.7 Authentic Memory and Storage

It is crucial to ensure the authenticity of all three data types within the operation of the network, safeguarding
them against any potential malicious manipulation. Given the transparency of the blockchain, inputtext
and ciphertext are susceptible to malicious copying or unauthorized acquisition. Contrarily, we argue that
garbledtexts cannot be predicted, copied or obtained outside the transaction’s execution.

Generally speaking, the challenge of protecting private data in the context of blockchains mostly deals
with ensuring an adequate and tight access control to those ciphertexts. The use of the plaintext behind an
inputtext or a ciphertext must be permitted only if this usage complies with the intentions of the contract
that is owning or receiving them, and the users who contributed those inputtexts.

In a high level, the system employs three types of protection mechanisms: authenticated storage, authenti-
cated memory and garbled execution environment (GEE™):

• Authenticated storage protects ciphertexts ‘at rest’; each ciphertext is associated with one or more
contract addresses in a way that permits onboarding of the ciphertext only in the execution of those
contracts; this means that copying a ciphertext from one contract to another is futile. By copying
a ciphertext ct we mean either hardcoding the content of ct into another contract, or transmitting it
within a transaction as an argument.

• Authenticated memory is the vehicle between the storage and the execution environment. The function
first loads the ciphertext from storage into the execution environment memory, from which it may turn
into a garbledtext. On the other way around, to store the plaintext value behind a garbledtext to storage,
it has to be offboarded first into a ciphertext that resides in memory, from which it is actually stored
in the storage.

• Ciphertexts cannot be transferred between contracts, which means it is useless to pass a ciphertext
as an argument between different contracts. The way to pass private information between contracts
is for the caller contract to turn the ciphertext into a garbledtext first, which puts it in the garbled
execution environment, and then pass the garbledtext to the callee contract, this way, the garbledtext
is available for secure manipulation by the caller as well. Garbledtexts are protected by the fact that
they are random and unpredictable values generated ‘on-the-fly’.

Authenticated Memory & Storage. Memory refers to the EVM run-time memory, which is stack-based,
and storage refers to the EVM persistent storage, which is maintained per address. Recall that only contracts’
addresses (i.e., to exclude EOA addresses) are associated with actual storage, whereas EOAs are associated
with the their balance and nonce only. For a function to perform some computation on a state variable, it
has to first load it from the contract’s storage and to know its exact location in the storage. To do that, the
function provides the variable’s location loc to the sload opcode, which triggers the EVM to execute it
and push the variable’s content to the memory stack.6 On the other way around, for a function to persistently
save some value into some state variable, it provides the location loc of that variable as well as the value
to the sstore opcode.

The EVM keeps track of the depth of the execution, that is, when an EOA calls some function func1
on a certain contract contract1, the execution of func1 begins at depth = 1; if that function calls
function, say func2, on another contract, say contract2, then depth changes to 2 (and changes back
to 1 when func2 returns to func1), and so on. Note that function calls within the same contract do not
change depth.
6Location is also known as ‘key’ in the context of the EVM storage, as the storage is simply a key-value store.

16

The gcEVM provides an extension to the ‘normal’ EVM memory and storage operation described above,
which we call authenticated memory and authenticated storage.

The authenticated memory maintains a map of the form

µ : N→ CT∗,

that is, for each execution depth the map maintains all authenticated ciphertexts for that depth. To check
whether a ciphertext ct is authenticated for depth d, we check if ct ∈ µ(d). In our context, a ciphertext may
arrive in memory by either loading it from storage via the sload opcode or as a result of the Offboard
mechanism (which, given a garbledtext, returns a ciphertext).

Authenticated storage is maintained in a per-contract basis; each contract, say on address addr, is asso-
ciated with another contract at address addr′ that contains only storage (and no bytecode). The relation
between addr and addr′ must be one-to-one, so that a malicious entity would not be able to associate an-
other address addr′′ to neither addr or addr′. The associated contract at addr′ forms the authenticated
storage of the contract at addr; this authenticated storage is only accessible from the EVM and not by the
contract developer. If a valid ciphertext ct resides at location loc of the storage of address addr, then the
authenticated storage, of address addr′, contains ct at the same location loc. We must ensure that a user
cannot cause this to happen on invalid ciphertexts.

The authenticated memory and storage adhere to the following rules, which are also depicted in Figure 9.

1. Load from storage. A ciphertext ct resulting from sload applied to a storage at location loc that
is performed in depth d is first checked against the authenticated storage. If the authenticated storage
has ct in location loc as well then ct is added to the set µ(d), otherwise ct is not add to µ(d) (but it
is pushed to the normal memory).

2. Onboard. When Onboard is invoked by a function at depth d on cipher ct, if ct is authenticated for
depth d (i.e., ct /∈ µ(d)) then it is being translated into a garbledtext and that garbledtext is returned
to the caller; otherwise, the execution is reverted.

3. User input. As explained above, a user input is encrypted by its own symmetric key and upon verifi-
cation (of authenticity) it is turned directly into a garbledtext, readily available for secure operations.

4. Public input. A contract might want to input some public input into the secure execution environment
(GEE), which means that value has to be turned into a garbledtext. This is done via the special opcode
‘SetPublic’.

5. Offboard. A ciphertext ct resulting from the Offboard mechanism (applied to a garbledtext) that
is performed by a function in depth = d is added to the set µ(d), upon which we say that ct is
authenticated for depth d.

6. Offboard to user. When a contract wishes to disclose some value only to a specific user, that value is
turned from garbledtext into a ciphertext that is encrypted under that user’s key (the symmetric key
uk), and that ciphertext is not considered authenticated (it is placed in memory but is not added to
µ(d)).

7. Decrypt. When a garbledtext is decrypted, the plaintext value is returned directly to the normal (non-
authenticated) memory.

17

Figure 2: Overview of the gcEVM. The colored part represents the security and privacy extension to the
normal EVM, which is represented by the white part.

8. Store to storage. When sstore is called by a function at depth = d, to store ct at location loc,
if ct ∈ µ(d) then, in addition to writing ct to location loc of the normal storage, write it to location
loc in the authenticated storage as well, otherwise (if ct /∈ µ(d)) write it only to the normal storage,
and make sure the authenticated storage at location loc is empty.

9. Cleaning memory. When depth is decreased from d to d′ < d (when a function returns, reverts, etc.)
the set µ(d) in the authenticated memory is cleaned. Similarly, when depth is increased from d to
d+ 1 (on a function call), we make sure that µ(d+ 1) is empty.

10. Immobility of ciphertexts. An authenticated ciphertext cannot transit between depths, namely, calling
a function (on another contract) with an argument of type CT would deem that ciphertext invalid (i.e.,
it will not be considered as authenticated for the new depth); similarly, when returning an argument
of type CT to a caller function from another contract the returned value would not be considered
authenticated. The right way to move such private values is by using the GT type.

The Garbled Execution Environment (GEE™). As explained, a garbledtexts may be generated from
an inputtext or a ciphertext, only upon confirming their authenticity. It is crucial to note that garbledtexts
bear significance only in the course of the execution of the transaction. Additionally, their inherent safety is

18

derived from the negligible likelihood of predicting them, given that they are formed of random values that
are revealed to the parties only at the very moment of execution. This property allows us to treat them with
ease rather than keep tracking them across function calls. Since the next batch of transactions to run is fixed
before the garbledtexts are revealed, it is not possible for a user or for a contract to hardcode a garbledtext in
their transaction or state, as garbledtexts are unpredictable, furthermore, these garbledtexts become useless
once the execution of the transaction is completed; the garbledtexts for the next transactions batch would be
completely fresh.

3 Decentralizing Sequencers in COTI V2

3.1 Concept and Rationale

The evolution of blockchain technology has ushered in the need for scalable and secure layer 2 solutions.
COTI V2 aims to be at the forefront of this evolution by introducing a decentralized sequencer model.
This model is inspired by shared sequencer frameworks, which have shown promise in enhancing network
security and reducing centralization risks.

A sequencer in a blockchain network is responsible for ordering transactions before they are finalized on
the blockchain. Centralized sequencers, while efficient, pose risks including single points of failure and
potential censorship. Decentralizing the sequencer function distributes these responsibilities across multiple
participants, thereby enhancing security, redundancy, and resistance to censorship.

3.2 How It Works

The decentralized sequencer model for COTI V2 involves the following key components:

Figure 3: Decentralized sequencer model

• Shared Sequencer Network: A cluster of sequencers that operate in a rollup-agnostic manner. This
network ensures that valid transactions are included in the blockchain within a finite time frame,
providing the necessary liveness and censorship resistance.

• Operator Selection and Rotation: Sequencer operators are selected through a transparent and fair

19

consensus mechanism, possibly utilizing a Proof-of-Stake (PoS) model. The right to sequence trans-
actions is rotated among operators to prevent centralization and ensure fairness.

• Staking and Slashing Mechanisms: Operators are required to stake tokens as a form of security deposit.
Misbehavior or failure to perform duties results in slashing of their stake, aligning operators’ interests
with the network’s integrity.

• Transaction Processing: Transactions are processed off-chain by the sequencers and batched together
before being finalized on the blockchain. This approach maintains the scalability benefits of layer 2
solutions while leveraging the security of the underlying layer 1 blockchain.

3.3 Implementation

Consensus Protocol:

In COTI V2’s decentralized sequencer model, the modified Practical Byzantine Fault Tolerance (PBFT)
algorithm plays a critical role. This consensus protocol operates in several key steps to ensure secure, fair,
and transparent sequencer operation:

Figure 4: Consensus protocol steps

1. Nomination: Token holders nominate candidates for the sequencer role. Any token holder can be-
come a nominee by locking a specified amount of tokens as collateral, demonstrating their commit-
ment.

20

2. Voting: Stakeholders vote on the nominated candidates, with the voting power of each stakeholder
proportional to their token holdings. This ensures that the selection process is democratized and
reflects the preference of the network’s participants.

3. Election: After the voting period concludes, the candidates with the highest votes are elected as
sequencers for a predetermined term. This term is designed to be short enough to allow regular
rotation but long enough to ensure stability.

4. Rotation: The right to sequence transactions is rotated among the elected sequencers based on a
predefined schedule. This rotation can be deterministic, based on the order of election, or randomized
to enhance security.

5. Operation: During their term, sequencers order transactions and propose blocks to the network. Their
operations are continuously monitored for compliance with the network’s rules, ensuring reliability
and integrity.

6. Slashing and Replacement: If a sequencer acts maliciously or fails to perform their duties, they
can be slashed, meaning a portion of their staked tokens is forfeited. A new election process can be
initiated to replace the slashed sequencer.

7. Rewards: Sequencers receive rewards for their service, typically in the form of transaction fees or
newly minted tokens. This incentivizes participation and ensures that sequencers act in the network’s
best interest.

Smart Contracts for Staking and Slashing:

The implementation of Smart Contracts for Staking and Slashing introduces a rigorous and automated frame-
work designed to maintain integrity and accountability among sequencers within a blockchain network. This
process begins with Stake Deposit, where operators commit a certain amount of $COTI tokens into a staking
contract to qualify as sequencers, establishing a tangible investment in their role. The mechanism of Stake
Locking further cements this commitment by ensuring the stake remains untouchable for a predetermined
period, effectively binding operators to their obligations.

Behavior Monitoring plays a crucial role in this ecosystem, employing automated systems to vigilantly over-
see sequencer actions, ensuring adherence to the network’s protocol by evaluating criteria such as block
production fidelity and transaction fairness. In the event of protocol deviation, Violation Detection mech-
anisms promptly identify and log offenses, potentially triggering automated alerts or necessitating manual
reports from network participants. Crucially, Consensus on Violation may be required for certain breaches,
safeguarding against unwarranted penalties by ensuring any slashing decision is collectively agreed upon,
thereby preventing misuse or errors in violation assertions.

Upon verified breach of protocol, Slashing Execution is carried out, with the offending party’s stake being
partially or fully confiscated, the severity of which is predefined or calculated based on the infraction’s
gravity. However, an Appeal Process is available, allowing operators to challenge a slashing verdict through
a structured governance mechanism, presenting evidence to contest the violation. For those who uphold the
network’s standards throughout their term, Stake Return ensures the reimbursement of their commitment,
with the contract facilitating the smooth reclamation of funds. Additionally, Reward Distribution recognizes
and incentivizes exemplary participation, with rewards allocated based on factors such as staked amount,
duration of commitment, and overall network contribution, underlining the system’s holistic approach to

21

fostering a secure, efficient, and accountable blockchain environment.

Figure 5: Staking and validation process

1. Stake Deposit: Operators deposit a predefined amount of COTI tokens into the staking contract to be
eligible as sequencers. This contract records the staked amount and the identity of the depositor.

2. Stake Locking: Once deposited, the stake is locked for a specified duration to ensure commitment.
The contract prevents withdrawal of the stake during this period, ensuring that sequencers have skin
in the game.

3. Behavior Monitoring: Sequencer actions are monitored against the network’s protocol rules. This
could involve automated systems tracking block production fidelity, transaction inclusion fairness, and
response times.

4. Violation Detection: If a sequencer violates predefined rules (e.g., censoring transactions, failing to
produce blocks on time), the violation is detected and logged by the contract. This could trigger an
automatic alert or require manual reporting by network participants.

5. Consensus on Violation: For certain types of violations, a consensus among other network par-
ticipants may be required to confirm the offense. This ensures that the slashing mechanism is not
triggered by false accusations or errors.

6. Slashing Execution: Upon confirmation of a violation, the contract partially or fully slashes the
offender’s stake. The exact amount can be predetermined in the contract or calculated based on the
severity of the violation.

7. Appeal Process: Operators may have the option to appeal a slashing decision through a governance
mechanism, presenting evidence to dispute the detected violation.

8. Stake Return: For operators who complete their term without violations, their stake is returned post

22

the locking period. The contract handles the automatic release of funds.

9. Reward Distribution: Operators in good standing may receive rewards, distributed through another
smart contract, which could factor in the staked amount, term length, and network performance.

This structured approach ensures that staking and slashing mechanisms enforce network integrity and per-
formance, deter malicious behavior, and promote a healthy, decentralized ecosystem. Each step involves
specific smart contract functions that are transparently executed on the blockchain, providing a secure and
automated system for managing sequencer operations in COTI V2.

Infrastructure for Shared Sequencing:

The development of an Infrastructure for Shared Sequencing represents a critical endeavor in enhancing
the operational efficiency and interoperability of blockchain networks. At its core, this initiative involves
the meticulous design of a software framework that sequencers will employ, ensuring a robust architecture
for transaction processing, batch creation, and seamless communication across various rollups and the se-
quencer network. Key to this framework is the establishment of interoperability protocols, which facilitate
smooth interactions and standardized transaction processing across the ecosystem. Additionally, paramount
importance is placed on implementing stringent security measures to safeguard against unauthorized access
and maintain transaction integrity, alongside integrating scalability solutions to adeptly manage high vol-
umes of transactions. This comprehensive approach not only fortifies the blockchain infrastructure but also
significantly propels its capacity to support a growing array of applications.

Figure 6: Shared sequencer framework

1. Software Framework Design: The initial step involves outlining the software architecture that se-
quencers will utilize. This includes defining the protocols for transaction processing, batch creation,
and communication between different rollups and the sequencer network.

2. Interoperability Protocols: Developing protocols that ensure seamless interaction between the shared
sequencer infrastructure and multiple rollups is crucial. This involves creating standardized APIs and
data formats that enable transactions to be universally processed and understood across the ecosystem.

3. Security Measures: Implement robust security protocols within the software to protect against unau-
thorized access and ensure the integrity of transaction processing. This includes encryption, access

23

controls, and continuous security audits.

4. Scalability Solutions: Incorporate scalability solutions, such as sharding within the sequencer net-
work or adopting layer 1 scalability technologies, to handle high transaction volumes efficiently.

Operation Phase:

The Operation Phase of deploying a Shared Sequencing Infrastructure marks a pivotal transition from the-
oretical design to practical application within the blockchain network. This phase kicks off with the de-
ployment and integration of sequencer software, ensuring its seamless incorporation with existing rollups
through extensive compatibility and performance testing. Following deployment, sequencers commence the
processing and batching of transactions, utilizing sophisticated algorithms to enhance network throughput
and reduce latency by prioritizing transactions on various criteria. A significant focus is also placed on
enabling fluid cross-rollup communication, thereby knitting together a unified and interoperable blockchain
ecosystem that facilitates transactions across different rollups with ease. Moreover, an ongoing commitment
to monitoring and maintenance ensures the sequencer network remains at the pinnacle of performance, se-
curity, and reliability, with continual updates and optimizations driven by network analytics and emerging
technological trends. This operational vigilance guarantees the infrastructure’s adaptability and enduring
relevance in the fast-evolving blockchain landscape.

Figure 7: Operation phase overview

1. Deployment and Integration: Roll out the sequencer software across the network, integrating it
with existing rollups. This phase involves rigorous testing to ensure compatibility and performance
benchmarks are met.

2. Transaction Processing and Batching: Sequencers begin processing individual transactions, batch-

24

ing them for efficient blockchain inclusion. Batching algorithms prioritize transactions based on cri-
teria such as fees, age, and size to optimize network throughput and minimize latency.

3. Cross-Rollup Communication: Enable cross-rollup transactions through the shared sequencer in-
frastructure, facilitating a cohesive and interoperable blockchain ecosystem. This involves routing
transactions between rollups and resolving any cross-chain dependencies or conflicts.

4. Monitoring and Maintenance: Continuously monitor the sequencer network for performance, se-
curity, and reliability. Implement updates and optimizations based on observed network activity and
technological advancements.

This detailed approach ensures that the shared sequencing infrastructure for COTI V2 is built on a foun-
dation of security, scalability, and interoperability. By focusing on comprehensive software development
and operational protocols, COTI V2 aims to achieve a decentralized, efficient, and user-friendly transaction
processing network.

3.4 Network Fee Structure

COTI V2 utilizes a dynamic fee model designed to strike a balance between affordability and network
efficiency. This approach aims to keep fees lower than the Ethereum mainnet while ensuring transactions
are processed promptly. Let’s delve into the factors that determine network fees:

• Demand-Based Pricing: Similar to Ethereum’s gas fees, COTI V2 employs a demand-driven pricing
model. When network congestion rises due to increased transaction volume, fees automatically adjust
upwards. Conversely, during periods of low demand, fees decrease. This mechanism ensures resource
allocation reflects actual network usage.

• Decentralized Fee Rules: The COTI V2 protocol establishes the core principles for fee calculation.
These pre-programmed rules autonomously adjust fees in response to network demand and usage
patterns, eliminating the need for manual intervention.

• User-Defined Maximum Fees: Users retain some control over transaction costs, particularly during
peak demand periods. They can specify the maximum fee they are willing to pay for their transaction
to be included in the next block. Transactions with higher fees are generally prioritized for inclusion
by sequencers. It’s important to note that some fees may be denominated in the native $COTI token.
Furthermore, fees can be tailored to meet the specific needs of network functionalities and resource
demands, including support for certain privacy features and services, smart contract fees, and so on.
The fees can be adjusted to facilitate access to advanced Zero-Knowledge (ZK) services within the
network. These services may include specialized ZK computations, private information retrieval, or
access to secure data feeds.

• Sequencers and Fee Competition: Sequencers play a vital role by ordering transactions and submit-
ting them to the Ethereum mainnet. While sequencers have some discretion in pricing transactions,
the competitive market and pre-defined protocol rules contribute to ensuring fees remain fair and
competitive.

• Layer 1 Costs: A portion of the network fee covers the cost of submitting transaction data to the
Ethereum mainnet (Layer 1). COTI V2, as a Layer 2 solution, batches multiple transactions together
for submission to Layer 1, minimizing these costs. However, the overall fee structure incorporates

25

these Layer 1 gas prices, which are influenced by Ethereum network activity.

In essence, COTI V2 employs a decentralized approach to network fee determination. Protocol rules govern
the core framework, while fees dynamically adjust based on network demand and the cost of interacting
with the Ethereum mainnet. Sequencers and users operate within this system, influencing transaction priori-
tization and costs through market dynamics and individual choices, respectively.

3.5 Governance Model

Framework Development

The Operation Phase of deploying a Shared Sequencing Infrastructure marks a pivotal transition from the-
oretical design to practical application within the blockchain network. This phase kicks off with the de-
ployment and integration of sequencer software, ensuring its seamless incorporation with existing rollups
through extensive compatibility and performance testing. Following deployment, sequencers commence the
processing and batching of transactions, utilizing sophisticated algorithms to enhance network throughput
and reduce latency by prioritizing transactions on various criteria. A significant focus is also placed on
enabling fluid cross-rollup communication, thereby knitting together a unified and interoperable blockchain
ecosystem that facilitates transactions across different rollups with ease. Moreover, an ongoing commitment
to monitoring and maintenance ensures the sequencer network remains at the pinnacle of performance, se-
curity, and reliability, with continual updates and optimizations driven by network analytics and emerging
technological trends. This operational vigilance guarantees the infrastructure’s adaptability and enduring
relevance in the fast-evolving blockchain landscape.

1. Proposal Submission: Token holders can submit proposals regarding sequencer network operations,
including protocol upgrades, operator selection criteria, and dispute resolution mechanisms. This
ensures every stakeholder has a voice in the network’s evolution.

2. Discussion Platforms: Dedicated forums and discussion boards will be established for the commu-
nity to debate and refine proposals. This allows for transparent deliberation and collective intelligence
to shape the network’s policies.

Decision-Making Process

1. Voting System: Implement a decentralized voting mechanism where COTI V2 token holders cast
their votes on proposals. Votes are weighted based on token ownership, ensuring that those with a
larger stake in the network have a proportionate influence.

2. Quorum Requirements: Define quorum requirements for different types of decisions to ensure that
significant changes require a broad consensus, while routine matters can be decided with a simpler
majority.

3. Operator Selection: For sequencer operator elections, a specific voting process will be established,
allowing token holders to choose among candidates based on predefined criteria, ensuring the most
competent and trustworthy operators are selected.

Implementation and Enforcement

1. Smart Contracts: Deploy smart contracts to automate the governance process, from proposal sub-
mission to vote tallying and implementation of decisions. This reduces the potential for human error

26

Figure 8: Overview of governance model

and ensures transparency and fairness.

2. Dispute Resolution: Establish a clear and fair mechanism for resolving disputes within the commu-
nity. This could include arbitration by elected community members or an automated system based on
smart contract logic.

3. Periodic Review: Regularly review and update the governance model to address emerging challenges
and incorporate community feedback. This ensures the model remains effective and relevant as the
network and its ecosystem evolve.

This governance model for COTI V2 is designed to empower token holders, ensuring that the sequencer
network evolves in a way that is beneficial to all stakeholders. By leveraging blockchain technology and
smart contracts, the model aims to provide a transparent, fair, and efficient framework for community-driven
decision-making.

3.6 Conclusion

Decentralizing the sequencer in COTI V2 represents a significant step towards achieving a scalable, secure,
and community-driven blockchain network. Through careful design and implementation of the shared se-
quencer model, COTI V2 can set a new standard for decentralized transaction processing in the blockchain
space.

4 Tokenomics

4.1 The COTI Token

COTI V2 is an EVM-compatible L2, which requires a native token in order to fully realize the potential of the
network. This token serves as the lifeblood of the ecosystem, facilitating transactions, securing the network,
incentivizing operators, and providing the means to access and utilize the advanced privacy features of
COTI V2. In essence, the token is the cornerstone of this transformative solution, bridging the gap between
cutting-edge privacy technology and the practical functionality that users and developers require within the
ecosystem.

The current $COTI token holds a central and indispensable role within the ecosystem since the inception of
the COTI mainnet in 2019. Serving as a foundational native cryptocurrency, it plays a vital part in covering

27

transaction fees and managing various ecosystem functions. COTI recognizes a great value proposition both
for COTI token holders and to the COTI V2 future community in retaining the token’s central position in
the new economy, enabling it to grow in importance and relevance as the network’s capabilities expand.

As such, it needs to undergo a comprehensive technological upgrade, prompting the need for an improved
token infrastructure that will gradually replace the current native one. Instead of introducing an entirely new
token with a new and unrelated economy, COTI has opted for a migration plan that secures and augments
the token’s usage within the COTI ecosystem.

4.2 COTI V2 Evolution

COTI V2 introduces a fundamentally different economic framework compared to its predecessor, the ex-
isting COTI network. This evolution is driven by the network’s unique features and its compatibility with
EVM, allowing developers, DAOs, and dApps to seamlessly integrate and utilize the network.

COTI V2 embraces an open, public, permissionless network model. Such openness, coupled with proper
incentives, paves the way for a diverse array of developers and entities to harness its capabilities, fostering
innovation and growth. With EVM compatibility, developers aren’t required to learn new or obscure coding
languages, easing the transition to building dApps within the COTI mainnet.

The economy in COTI V2 is based on the combination of its advanced underlying technology and the exist-
ing COTI community, which will create a thriving and valuable ecosystem. The new network will enable
new benefits for network participants, contributors, developers and users. Capitalizing on its advanced
features and new benefits, COTI V2 has the capacity to drive an upsurge in transaction volumes, leading
to increased revenue through transaction fees. Additionally, it lays the foundation for the exploration of
fresh business models and revenue streams, stemming from heightened utility and the introduction of new
capabilities like smart contract deployments.

4.3 Monetary policy

Starting 2025, coinciding with the launch of the new mainnet, COTI V2 will initiate the minting of new
tokens every 103 hours (period), featuring a gradually reducing inflation rate that adjusts according to the
network’s changing demand and usage. The initial expansion of the total supply will occur at a periodic rate
of 0.45%, which will subsequently decrease periodically by 0.50% for a decade. Following this period, the
inflation rate is expected to stabilize at a rate comparable to the terminal value, though it remains adjustable
through the network’s governance mechanisms.

Transaction fees collected in $COTI will be pooled into a special Treasury, governed by the community,
which will decide on how to utilize these funds. Choices include redistributing these fees as rewards to
network participants or implementing a deflationary tactic by destroying some of the tokens. The fee and
potential token burn mechanisms suggest the possibility of limiting total supply growth, potentially leading
to a deflationary outcome. Under such conditions, the token supply could diminish, illustrating the protocol’s
capacity for adjustment and long-term viability. Figure 9 outlines various potential paths for token supply
changes, influenced by network activity and the associated fees.

Out of every new token minted in the network, 58% will be allocated to reward holders, stakers, node opera-
tors, and other network participants, encouraging active engagement and helping to secure and decentralize
the network. Under conditions of high staking participation, the nominal inflation introduced by this alloca-
tion is effectively offset by a proportional increase in holdings. This ensures that each participants share of

28

Figure 9: Total supply scenarios

the total token supply remains stable, preserving their relative position in the ecosystem.

In addition to community rewards: 24% will be allocated to the COTI Foundation, supporting a range of
ecosystem growth initiatives. This includes grants for developers and dApps, incentive programs, strategic
investments, and liquidity provisioning. Similar to the role of foundations in other L1 and L2 ecosystems,
this allocation plays a vital role in fostering innovation and long-term network expansion; while 18% will
be earmarked for development, ensuring continuous improvement, technical upgrades, and the long-term
scalability of the COTI V2 protocol.

5 COTI Node Ecosystem

5.1 Introduction

The COTI network functions as a self-sustaining economic ecosystem where nodes, license holders, and
stakers collaborate to grow and secure the network. At its foundation, Full Nodes operate as decentralized,
lean clients that play a critical role in maintaining the network’s security, scalability, and overall function-
ality. These nodes validate transactions, safeguard data integrity, and ensure the confidentiality of user
information.

In the COTI network, anyone with the appropriate license can run a Full Node to support the network and
earn Node Rewards, furthering the network’s decentralization. Node operators also gain the ability to run
their own "staking pool," which is a customized version of COTI’s Treasury application with configurable

29

parameters including locking periods, fees, and multipliers. This customization allows other users to stake
their $COTI tokens within these pools, providing additional support to the network’s decentralization.

The system’s structure extends beyond simple operation, offering various pathways for participation. To
engage in the node ecosystem, users must hold a license. For individuals less familiar with the technical
aspects of node operation, licenses can be assigned to experienced operators. This mechanism enables
license holders to participate in the reward-oriented node economy without the burden of technical node
management.

Significantly, nodes will support not only native $COTI staking but also any new tokens launching on COTI’s
network. This multi-token support creates value opportunities for both dApp developers launching on COTI
and for node operators themselves, expanding the utility and adoption of the entire ecosystem.

5.2 Node Licensing

5.2.1 License Types and Ownership

A Full Node License allows users to run the Node software or to assign the license to another operator.
Running a Full node provides control over performance, uptime, and security ideal for those with technical
expertise.

For users not interested in the operational aspects, licenses can be assigned to other node operators, with
rewards distributed according to their chosen level of engagement. The network also offers a Lite License,
priced at a fraction of a Full Node license and exclusively designed for assignment. While providing the
same Node Rewards APR, it offers a more accessible entry point into the network.

Both license types are represented as NFTs, ensuring uniqueness and transferability within the ecosystem.
With a limited supply, these licenses introduce scarcity, enhancing their long-term value and driving demand
as the network expands.

5.2.2 Running a Node

A Full Node license enables node operators to run a Full Node. In alignment with Ethereum ecosystem
norms, a Full Node validates all on-chain transactions and stores the complete state, blocks, and smart
contracts, but does not act as a sequencer. Operators can run multiple nodes, each with its own distinct
private key.

The Node software operates with minimal hardware requirements, making participation in the network
broadly accessible even for users with limited technical expertise.

5.2.3 License Assignment and Transfers

Assigning a license to a Full Node creates a lucrative opportunity for license holders. Upon assignment, they
begin earning a share of the Node’s rewards, distributed to high-performing nodes, minus an Assignment
Fee for operational costs. This fee is set by the node operator and ranges between 0% and 10%.

If the node operates a Treasury Pool allowing users to stake tokens, the license holder also benefits from
a share of the Staking Reward Fees collected from the staking rewards paid to stakers, further increasing
potential earnings. Choosing a well-managed node with an active treasury maximizes returns from both
node rewards and staking income.

30

Licenses are designed with liquidity in mind and can be traded on approved secondary marketplaces. License
transfers can be requested at any time and become effective at the end of the current reward period, ensuring
a smooth transition of operational rights.

5.3 Node Economy

5.3.1 Node Rewards and Performance Requirements

The economic structure of COTI nodes is designed to incentivize active participation and ensure the long-
term sustainability of the network. Full Nodes that maintain a minimum uptime of 98% are eligible to receive
Node Rewards, distributed every 103-hour period. This uptime requirement underscores the importance of
reliability and consistent performance.

Node operators who fail to meet this uptime threshold will not receive rewards until they achieve 98%
uptime. Node Rewards for license holders who have assigned their license to non-compliant nodes are
proportionally reduced, while Treasury pools remain unaffected as these funds belong to stakers rather than
the operators themselves.

Node Rewards constitute a significant portion of the inflationary tokens generated by the protocol in each
Reward Period, as part of the general 58% reward allocation outlined in the Tokenomics section. Unlike
some reward systems that are time-bound, COTI Node Rewards provide a continuous income source for
node operators based on the number of licenses assigned to their node.

5.3.2 Treasury Pools and Staking Economics

Each node operator can manage their own instance of the COTI Treasury, empowering consumer choice
within the staking ecosystem. These Treasuries function as mini-economies within the network, distributing
staking rewards based on configured stake, boost, locking period, and multiplier settings.

To incentivize participation and secure the network, the protocol distributes at least 5% of newly issued
tokens to treasury participants on a regular basis. This allocation represents a minimum threshold and could
increase depending on network conditions.

Staking rewards are proportional to the total amount staked but are subject to each node’s capacity cap. Each
Full Node License increases the cap by 500,000 $COTI, while each Lite Node License increases it by 50,000
$COTI. These caps are adjustable every 103 hours to align with network dynamics.

If a node’s total staked amount exceeds its cap, rewards are distributed based on the cap rather than the
actual staked amount, resulting in lower returns for participants. This system encourages balanced staking
across the network and ensures equitable distribution of rewards.

5.3.3 Node Operator Treasury Customization

Node Operators can customize their Treasury offerings by setting Staking Reward Fees ranging from 0%
to 10% on the protocol’s staking rewards. This fee can be adjusted every 103 hours, allowing flexibility in
response to changing network conditions. Additionally, operators control treasury fees for deposits, with-
drawals, and other activities, which are paid to the Pool and distributed to the participants as additional
rewards.

Certain aspects of the Treasury Pool remain fixed to maintain consistency across the network, including the

31

default annual percentage yield matrix and the gCOTI boost ratio. This ensures that no single pool can offer
disproportionately higher returns.

All funds deposited, distributed, or liquidated from any COTI treasury pool are safeguardednode operators
never have direct access to these funds, protecting stakers and maintaining trust in the system.

5.4 Multi-Token Support and Developer Ecosystem

The COTI network empowers developers with native, decentralized staking and treasury management tools
that can be seamlessly integrated into any dApp or protocol. This means any token on the COTI network
can leverage the treasury infrastructure, allowing users to stake tokens, earn rewards, and participate in
governance across multiple projects.

By leveraging COTI’s infrastructure, developers can focus on innovation and growth while benefiting from
shared staking rewards, governance mechanisms, and liquidity across platforms. This eliminates the need to
build staking and treasury features from scratch, significantly reducing development overhead.

This approach creates a positive feedback loop: as more projects integrate with COTI’s tools, they gain
access to an expanding ecosystem of stakers and liquidity providers, which in turn fuels demand for nodes
and staking services. The result is a thriving economy where both developers and node operators benefit
from network growth.

5.5 Economic Benefits for All Participants

The COTI node ecosystem offers multiple income streams for various participants. Node operators earn
Node Rewards from the protocol, along with Assignment Fees from license holders and Staking Reward
Fees from its treasury pool participants. License holders receive a share of these rewards by assigning
their licenses to high-performing nodes, while stakers earn returns from their chosen treasury pool’s staking
activity.

This comprehensive reward structure ensures that all participantswhether highly engaged node operators
or more passive stakersare incentivized to contribute to the network’s growth and stability based on their
preferred level of involvement.

In summary, the COTI Node Ecosystem represents a carefully designed economic framework that supports
the broader COTI V2 infrastructure. By aligning incentives across different participant types and creating
multiple pathways for contribution and reward, the system ensures both short-term viability and long-term
sustainability, further strengthening COTI V2’s position as a leading confidential computing Layer 2 solu-
tion.

6 Applications

The COTI V2 framework, employing Garbled Circuits technology, presents an advancement in privacy
mechanisms, offering enhancements that result in a computational speed increase by a factor of 1,000 and
a reduction in resource intensity by a factor of 250. This development facilitates operation across diverse
devices, yielding an improved user experience compared to existing privacy solutions. Distinguished from
the constraints of Zero-Knowledge (ZK) based approaches, Garbled Circuits enable transaction processing
involving multiple stakeholders. The technology’s capacity for secure data utilization in verification and

32

computational tasks, particularly at this scale, heralds novel applications not only within Web3 ecosystems
but also across Web2 sectors.

This chapter outlines what are considered pivotal domains where COTI V2 would focus in order to catalyze
transformative impacts. It is anticipated that additional sectors and innovative concepts will emerge from
the community, contributing to the ecosystem’s evolution.

6.1 Confidential DeFi

DeFi has redefined the financial industry’s landscape, introducing new potential functionalities. Nonetheless,
the inherent transparency of on-chain activities necessitates a compromise on privacy, deterring institutional
engagement due to regulatory concerns. COTI V2 introduces confidential transactions, enhancing privacy
and security for existing services while complying with regulatory standards, thereby expanding DeFi’s in-
novation potential. It addresses long-standing vulnerabilities in Ethereum DeFi, such as exploitation through
Miner Extractable Value (MEV), by encrypting transaction details, thus preventing opportunistic behaviors
by MEV bots and frontrunners.

The forthcoming COTI V2 Devnet will provide developers with tools to enhance existing decentralized
applications (dApps) with advanced data security features or to innovate new DeFi-centric applications
previously unfeasible.

6.2 Confidential Transactions for Payments, Stablecoins, CBDC and RWA

The traditional financial ecosystem emphasizes transaction confidentiality to build trust and encourage user
participation. Mirroring this attribute in Web3 is crucial for its mainstream adoption. COTI V2 ensures
transaction confidentiality while maintaining compliance with regulatory frameworks for digital and real-
world assets, offering a mechanism for confidential payments that preserves the transparency of fund flows
yet encrypts transaction specifics.

6.3 Confidential Machine Learning and On-Chain Sensitive Data Management

In the current context of paramount importance placed on data management and privacy, COTI V2 intro-
duces a framework that enables Artificial Intelligence/Machine Learning (AI/ML) models to be trained on
sensitive data without compromising the anonymity of individuals. Large Language Models (LLMs) such as
ChatGPT depend on substantial volumes of data to enhance their service capabilities. This necessity raises
concerns regarding the protection of user privacy and intellectual property (IP). Utilizing Privacy-Preserving
Machine Learning (PPML) facilitated by cryptographic methods like garbled circuits (GC), COTI V2 en-
sures that training on these data does not infringe upon the privacy of data subjects, thus paving the way for
new business models.

One example is federated learning, a collaborative approach involving multiple stakeholders, each possess-
ing unique datasets. The limited utility of these datasets due to their size or diversity can be overcome by
pooling them together, resulting in a collective data pool that enables the development of more accurate
machine learning models.

Furthermore, organizations possessing advanced machine-learning models derived from their proprietary
data and seeking to provide these models as a service represent another application scenario. An organiza-
tion with a model that can, for instance, differentiate between images of dogs and cats with high precision
might offer this predictive capability to other entities lacking the resources for similar model development.

33

By deploying such a model on a blockchain platform ("on-chain"), the organization can make its classifica-
tion service available while safeguarding the privacy of the model’s IP and the data being classified. This
mechanism, referred to as private inference, allows end-users to access the model’s predictive functionalities
without the need to publicly disclose their data.

These instances illustrate the initial applications of integrating privacy-preserving techniques with machine
learning. As technological developments in this domain continue to advance, the scope and impact of these
applications are anticipated to broaden, highlighting the significance of privacy-preserving methodologies
in the evolution of AI/ML capabilities.

6.4 Dynamic Decentralized Identification (DyDID)

COTI V2 facilitates a paradigm where identity verification and personal data management are executed with-
out exposing actual data to third parties. Users maintain control over their information while fulfilling Know
Your Customer (KYC) requirements. This framework allows for secure, privacy-preserving interactions be-
tween digital identities and dApps, enabling trustless, regulated environments for global service applications
without compromising sensitive data.

The advent of COTI V2, with its state-of-the-art garbled circuit technology, addresses the critical privacy
challenges impeding Web3’s broader adoption. It offers superior solutions to the privacy issues prevalent
in Web2 industries, presenting substantial opportunities for business innovation. Developers worldwide are
invited to participate in the upcoming COTI V2 Devnet, contributing to the evolution of a more private,
secure, and user-friendly Web3 ecosystem.

7 Conclusion

In the conclusion of this research document, it is observed that the development of COTI V2 represents a
pivotal advancement in the realm of blockchain privacy mechanisms and system efficiency. Through the
deployment of an innovative Layer 2 privacy enhancement for Ethereum, COTI V2 introduces a significant
enhancement to confidentiality within blockchain transactions. Utilizing advanced cryptographic methods,
this development not only increases security measures but also expands the functional scope for decentral-
ized applications, potentially accelerating innovation and adoption within the Web3 domain.

The application of Garbled Circuits alongside a redesigned tokenomics framework demonstrates COTI’s
dedication to fostering a secure, scalable, and user-focused blockchain ecosystem. This strategic evolution
invites a diverse array of stakeholders, including developers, enterprises, and users, to engage with the
emergent opportunities in Web3, characterized by enhanced privacy and reliability.

Therefore, COTI V2 should be viewed as a substantial shift in the approach to blockchain technologies,
emphasizing its potential to redefine the standards of privacy, efficiency, and user agency in the digital
landscape. The successful integration and wider adoption of COTI V2 could serve as a critical determinant
in the future direction of blockchain privacy, establishing a new norm for security, operational efficiency,
and user empowerment across the sector.

© All rights reserve. The contents contained herein, inclusive of this abstract are exclusive property and are subject to protection
under relevant copyright legislation. All materials, information, and assumptions provided within are subject to alterations and
amendments without prior notification. This document, alongside the technologies explicated herein, serves purely as informa-
tional resources and does not constitute an offer, solicitation, or endorsement for the initiation of any transactions, investments, or

34

References

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 784–796.
ACM, 2012.

[BMP22] Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient asymmetric threshold ECDSA
for mpc-based cold storage. ePrint Archive, 2022.

[BSW06] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on computa-
tional diffie-hellman. In PKC, pages 229–240. Springer, 2006.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and
Hall/CRC, 2020.

[SPW07] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In CT-RSA, pages 357–371. Springer, 2007.

[Woo23] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Technical report,
Ethereum Foundation, 2023.

contractual agreements. It shall not be construed as providing any form of advice or consultation. The authors explicitly disclaim
any and all liabilities for any resulting consequences, whether direct or indirect, stemming from reliance upon or utilization of the
contents contained within this document.

35

	Why Confidentiality Is Blockchain Network's Next Frontier
	Introduction
	Transitioning from Web2 to Web3
	Confidentiality on Public Blockchains
	Rethinking On-Chain Confidentiality: Pushing Beyond Limitations

	The Core Technology: Garbled Circuits-Based MPC
	Introduction to Garbling Protocols
	Introduction of gcEVM
	Background on the EVM
	The EVM's (lack of) Confidentiality
	Garbled Circuits
	Circuits
	Garbling Schemes
	Example: Secure Two-Party Computation (2PC) via Garbled Circuits

	The gcEVM
	gcEVM-Related Data Types
	The gcEVM Data-Flow

	Authentic Memory and Storage

	Decentralizing Sequencers in COTI V2
	Concept and Rationale
	How It Works
	Implementation
	Network Fee Structure
	Governance Model
	Conclusion

	Tokenomics
	The COTI Token
	COTI V2 Evolution
	Monetary policy

	COTI Node Ecosystem
	Introduction
	Node Licensing
	License Types and Ownership
	Running a Node
	License Assignment and Transfers

	Node Economy
	Node Rewards and Performance Requirements
	Treasury Pools and Staking Economics
	Node Operator Treasury Customization

	Multi-Token Support and Developer Ecosystem
	Economic Benefits for All Participants

	Applications
	Confidential DeFi
	Confidential Transactions for Payments, Stablecoins, CBDC and RWA
	Confidential Machine Learning and On-Chain Sensitive Data Management
	Dynamic Decentralized Identification (DyDID)

	Conclusion

