COTI’s
MultiDAG 2.0 Protocol
Light Paper

By:
Dr. Nir Haloani, Eli Hallufgil, Guy Mesika, Alexander Panasenko, Yuval Altun, Tomer Armarnik, Dima Rudenko

Table of Content

Table of Content
Abstract

Glossary
MultiDAG 2.0 Protocol
Token Generation
Token Minting
Token Transfer
Consensus

Burn Tokens
Hard-Fork

Fees

Protocol Roadmap

Summary

-—

0 00 N N o o o o A~ W NdDdN

Abstract

The purpose of this document is to describe the transition of COTI’s Trustchain from the MultiDAG 1.0 protocol (Whitepaper) to the new enhanced MultiDAG 2.0
protocol. In addition, this document will explore the MultiDAG 2.0 enhanced capabilities and provide a high-level technical overview of the new protocol. While
MultiDAG 1.0 was a significant milestone in the development of the Trustchain, and acted as a technological proof of concept and infrastructure backbone that
enabled the COTI development team to test technical hypotheses and which provided a strong foundation for building a Scalable and Secure protocol, it lacked
the fundamental client-side components required to create utilities that will serve COTI’s business objectives. The motivation behind MultiDAG 2.0 was to
enhance MultiDAG 1.0 capabilities by introducing scalability, performance, and security improvements.

Furthermore, MultiDAG 2.0 will allow a bi-directional wrapped asset swapping between the Trustchain and supported blockchain networks as a result of the COTI
Bridge 2.0 upgrades introduced in order to facilitate MultiDAG 2.0.

Glossary

Term Meaning

DAG Directed acyclic graph.

MultiDAG Multi token-directed acyclic graph.

Full Node A specialized server run by a user for common network
tasks.

Financial A specialized server operated by COTI for common

Server Node network financial calculation tasks.

Trust Score A user metric that is used for effective transaction
processing and risk mitigation.

DSP Double Spend Prevention Node.
Transaction The process of checking the transaction before
Validation attachment to the DAG Cluster.

https://coti.io/files/COTI-technical-whitepaper.pdf

MultiDAG 2.0 Protocol

MultiDAG 2.0 Protocol builds on top of the existing protocol architecture and will enable new types of transactions. These new transaction types will permit
Trustchain clients to autonomously Generate new tokens and control token circulation by Minting and Burning them.

After MultiDAG 2.0 goes through its Testnet and Mainnet trial periods, MultiDAG 2.0 will be officially initiated by creating a hard fork transaction that will be

attached to DAG and confirmed by network consensus. With this change, also comes a new token standard: CMD (COTI MultiDAG).
From that point, new tokens can be generated, transferred, and burned on the Trustchain as long as the utilized Full Node supports MultiDAG 2.0 protocol.

The main difference between the legacy protocol and the updated one is its (cluster: token), MultiDAG 2.0 uses a single cluster for multiple tokens (1:n); this new
approach increases confirmation times for low utilized tokens and reduces the need for starvation transactions during low traffic network conditions.

MultiDAG 1.0 MultiDAG 2.0

Token Token Token Token
(DAG ID=0) (DAG ID=1) (DAG ID=2) (DAG ID=3)

In MultiDAG 2.0, transactions help each other to reach consensus regardless of the token
type. For example, a transaction from Token ID=1 can attach to a transaction of Token
ID=2 and Token ID=3 to help reach consensus. The more transactions on the DAG, the

In MultiDAG 1.0, each transaction helps to reach consensus for other transactions

of the same token type. For example, a transaction in DAG ID=1, will only be

able to attach to other transactions in DAG ID=1 to reach consensus. It can not attach
to DAG ID=2 or DAG ID=3 transactions. As a result, it takes more time to reach consensus. faster they will be approved, regardless of the token type.

Token Generation

In order to issue a new Token, the client application will input the following
token parameters Name, Symbol, Total Supply, and Scale. After the
client submits all required parameters, the system will validate the input; if
the request is valid, the system will provide a fee estimation.

If the client decides to proceed with the token generation process, a token
generation transaction will be created. The network will prevent duplicate
token generation by performing validation on both Full Node and DSP
Node levels.

Once the token generation process is complete, the token is, in effect,
issued by the issuing party and can now be minted and transferred freely
on the Trustchain.

Example:

Name: Universal Payment Token
Symbol: UNI

Max Supply: 1,000,000

Scale: 8 (0.00000001)

Token Generation

. ~
= i1} (7] N
Wallet FS FN DSP
Generate New
Token
generateRequest
I Validate
< generateResponse
getFeeResponse
Transaction
— Transaction —»
Validate

C

firm

l«— Confirmed

Token Minting

Once a token is generated and reaches consensus, the token issuer may wish to
increase token circulation by performing a mint action.

The mint action is completed by submitting a mint request to the Full Node and
obtaining fee estimates from the latter and a Financial Server Node fee.

The Full Node will accept token minting requests only from the token issuer
before the mint process initiation Full node will validate mint request parameters
and prevent minting token amounts that would breach the token total supply cap
defined during the token generation process the network will prevent
double-spend transactions.

When the minting transaction reaches network consensus, minted tokens will be
transferred to the receiving address specified during the token mint request.

Example 1: a token was generated with Total Supply set to 1M tokens, the client
submitted a request to mint 500K tokens, and the mint request was successful.
The client submitted a mint request for 600K, mint request will be rejected as the
requested mint amount (600K) > Mintable Amount (500K).

Example 2: a token was generated with Total Supply set to 1M tokens. The
client submits two parallel requests to mint 1M tokens to two separate Full
Nodes, resulting in the first transaction to reach consensus will be considered
successful and the second request will be considered rejected.

Token Minting

- < =
T = o W V
User Wallet FS FN DSP
1 Mint Token [—#
H mintRequeFig
Validate
< mintResponse —
Calculate
getFeeResponse
getFee }—»
I | Calculate
getFeeResponse F
generateTokenTx —
I Transaction |-»|
Validate
Confirm
le—| Confirmed | —

Token Transfer

Once a new token is minted, it will be transferred to the receiving address
stated during the mint request. Once the minted token is received, it can
be transferred to any Trustchain address, similar to transferring $COTI. As
tokens that were generated on the Trustchian do not always have value
(price), transfer fees will be charged from the client's $COTI balance.

Consensus

Network consensus remains unchanged; nevertheless, adding
additional interconnected transactions to the DAG will significantly
improve transaction confirmation times for low utilized tokens thanks to
highly utilized tokens. Any transaction, regardless of its type or utilized
token, will help drive previously attached transactions towards
confirmation as long as they are in the same Trustscore range, as can
be observed in the diagram.

Burn Tokens

To control token circulation, tokens can be minted to increase
circulation and burned to reduce circulation. Clients can reduce token
circulation by transferring tokens to a "zero" address, after the transfer
transaction has been confirmed, transferred tokens are burned and
cannot be retrieved or transferred to any other address. Burning tokens
in the following manner: assuming token max supply set to 1M, and
issuer minted 900K tokens (circulating supply), remaining mintable
supply equals 100K. For example: If 200K tokens are transferred to
"zero address" then New Circulating Supply equals 700K (Circulating
Supply = Current Circulating Supply - Burned Supply)

NOTE: This feature is not yet fully implemented and will be introduced later on
based on protocol roadmap

Hard Fork

Genesis

TS: 0-10 TS: 11-20 TS: 21-30 TS: 31-40 TS: 41-50 TS: 51-60 TS: 61-70 TS:n
: H H i i
| com | | comi | | com | | com | | com | | com | | comi | |]
| comi | | coTi | | comi | | comi | | comi | | com | | coTi | |]
| com | [comi | | com | | com | | com | | com | [comi | |]
) : ./__.__\. p . p . o ./.-&..\.
AAAA BBEBB | ecee | | pooD | | EEEE | | FFFF | | GGG |]
— p o o - Ay
) . ey o Al e N
BBBB | ceee | | pooD | | EEEE | | FFFF | | GGG AARA |]
" _ O o L N
) . P N PN e N
| ccec | | boop | | EEEE | | FFFF | | GGG AAAA BBBB |]
\ / Ny % / @ M N
VN N A P / \ TN
| DODD | | EEEE | | FFFF | | GGG AAAA BBBB | ceee) |]
N/ o o - " N
oy A al. f \ Ve N
| EEEE | | FFFE | | GGG AARA BEBB | eeee | | ppoD | |]
o N r o . Y ./..‘-.\.. £ Y ./.-‘-.\-
| FFFF | | GGG AARA BBBB | ccee | | booD | | EEEE | |]
o O " o L o
T / \ oy A A N
| GGG AARA BBBB | ecee | | poDD | | EEEE | | FFFE | |]
% y . S A L 4 “ 4 N
| com | [comi | | com | | com | | com | | com | [comi | |]

Hard-Fork

A hard-forking event is required to migrate the Full Nodes from MultiDAG 1.0 to MultiDAG 2.0. Once MultiDAG 2.0 completes its trial period, a hard-fork
transaction will be transmitted on the network. Full Nodes that have updated to the latest version will be able to initiate the new generate & mint transaction and

process transfer transactions containing assets other than $COTI.

Fees

Both the generate and mint transactions require fees to be paid to participating nodes. Fees will be paid using $COTI originated from the Token issuer wallet

balance.

T Vs

a'/ Mative / Maliue\\\.l

| Transfer | Transfer |

| Transacfion ;' | Transaction

. %, A
< >N f/\ﬁ
{ Mative / MNative) J Mative { Mative
| Transfer Transfer | : Transfer | | Transfer
\ Transaction / Transaction / -.__Transacliun;-' |, Transaction |
\‘n___ _,/ _l__,/ _j '\\h _f/

|

T \ Vi /*
/' Mative / en { Mative \‘-., / Even\‘.l
|I Transfer | |Gene i ' | Transfer | | Hard Faork

\ Transaction / \
LY

\ Transaction Transaction
\\ /
e / S~ ___/

Transac

/vt
J MNative
[Transfer |
| Transaction

. S

s ., ~
..-'f Mative ,-/Natiue A

Transfer | | Transfer

| Transaction ,.-'I '-\tTran saction |
LY i

\H,_ o g \xh A

//Naliue N ,-’/ Euen;\\\.,

i %
Transfer | | Hard Faork
| Transaction | \ Transaction /

N

!

7 token

Until the Event hard fork is processed, no multi-DAG related action is allowed [Generation

T|me ---._.—-—-—-—-—-—-—-—-—-—-—l—l—l+-

G
Transaction |

Protocol Roadmap

This section describes MultiDAG protocol features based on the version.

Feature MultiDAG 1.0 MultiDAG 2.0 MultiDAG 2.X
Trustchain Integration

Single DAG Cluster Per Token O O

Single DAG Cluster For Multiple Tokens O

Token Generation

Token Minting O

Token Burning O Partial Implementation® Finalize Implementation
Utility Tokens O
Wrapped Tokens O

Ledger Support O

* Token burning is partially implemented in MultiDAG 2.0 the full set of functionality will be released in future protocol versions.

Summary

MutiDAG 2.0 is a protocol enhancement built on top of the technical knowledge accumulated by building and testing MultiDAG 1.0. based on the acquired
knowledge, the main change introduced was the transition from a Single DAG Cluster per Token (1:1) to a Single DAG Cluster for Multiple Tokens (1:n). Based
on our research, this transition will result in an overall performance improvement for all transactions performed in the network, regardless of the token ID and of
the transactions volume. In addition, MultiDAG 2.0 brings the required capabilities to Generate & Mint Enterprise and Utility tokens that will make a significant
impact on business growth.

